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RESEARCH FUNDING

Big names or big ideas: Do peer-review
panels select the best science proposals?
Danielle Li1*† and Leila Agha2,3*†

This paper examines the success of peer-review panels in predicting the future quality of
proposed research.We construct new data to track publication, citation, and patenting
outcomes associated with more than 130,000 research project (R01) grants funded by
the U.S. National Institutes of Health from 1980 to 2008.We find that better peer-review scores
are consistently associated with better research outcomes and that this relationship persists
even when we include detailed controls for an investigator’s publication history, grant history,
institutional affiliations, career stage, and degree types. A one–standard deviation worse
peer-review score among awarded grants is associated with 15% fewer citations, 7% fewer
publications, 19% fewer high-impact publications, and 14% fewer follow-on patents.

I
n 2014, the combined budgets of the U.S. Na-
tional Institutes of Health (NIH), the U.S. Na-
tional Science Foundation, and the European
Research Council totaled almost $40 billion.
The majority of these funds were allocated to

external researcherswhoseapplicationswerevetted
by committees of expert reviewers. But as funding
has become more competitive and application
award probabilities have fallen, some observers
have posited that “the system now favors those
who can guarantee results rather than thosewith
potentially path-breaking ideas that, by definition,
cannotpromise success” (1). Despite its importance
for guiding research investments, there have been
few attempts to assess the efficacy of peer review.
Peer-review committees are unique in their

ability to assess research proposals based on deep
expertise but may be undermined by biases, insuf-
ficient effort, dysfunctional committee dynamics,
or limited subject knowledge (2, 3). Disagreement
about what constitutes important research may
introduce randomness into the process (4). Exist-
ing research in this area has focused on under-
standing whether there is a correlation between
good peer-review scores and successful research
outcomes and yields mixed results (5–7). Yet raw
correlations do not reveal whether reviewers are
generating insight about the scientific merit of
proposals. For example, if applicants from elite
institutions generally produce more highly cited
research, then a system that rewarded institutional
rankings without even reading applications may
appear effective at identifying promising research.
In this paper, we investigate whether peer re-

view generates new insights about the scientific
quality of grant applications. We call this ability
peer review’s “value-added.” The value-added of
NIH peer review is conceptually distinct from the
value of NIH funding itself. For example, even if
reviewers did a poor job of identifying the best
applications, receiving a grant may still improve
a researcher’s productivity by allowingher tomain-

tain a laboratory and support students. Whereas
previous work has studied the impact of receiv-
ing NIH funds on the productivity of awardees
(8, 9), our paper asks whether NIH selects the
most promising projects to support. Because NIH
cannot possibly fund every application it receives,
the ability to distinguish potential among appli-
cations is important for its success.
We say that peer review has high value-added

if differences in grants’ scores are predictive of
differences in their subsequent research output,
after controlling for previous accomplishments
of the applicants. This may be the case if review-
ers generate additional insights about an appli-
cation’s potential, but peer review may also have
zero or even negative value-added if reviewers are
biased,mistaken, or focused on different goals (10).
Because research outcomes are often skewed,

with many low-quality or incremental contribu-
tions and relatively few ground-breaking discov-
eries (2, 11), we assess the value-added of peer
review for identifying research that is highly in-
fluential or shows commercial promise. We also
test the effectiveness of peer review in screening
out applications that result in unsuccessful re-
search (see the supplementary materials for full
details on data and methods).
NIH is theworld’s largest funder of biomedical

research (12). With an annual budget of approxi-
mately $30 billion, it supportsmore than 300,000
research personnel atmore than 2500 institutions
(12, 13). A funding application is assigned by topic
to one of approximately 200 peer-review com-
mittees (known as study sections).
Ourmain explanatory variable is the “percentile

score,” ranging from 0 to 100, which reflects an ap-
plication’s ranking among all other applications
reviewed by a study section in a given fiscal year;
lower scores correspond to higher-quality applica-
tions. In general, applications are funded in order
of their percentile score until the budget of their
assigned NIH institute is exhausted. The average
score in our sample is 14.2,with a standarddeviation
(SD) of 10.2; only about 1% of funded grants in
our sample had a score worse than 50. Funding
has become more competitive in recent years;
only 14% of applications were funded in 2013.
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Our sample consists of 137,215 research project
(R01) grants funded from 1980 through 2008. R01s
are project-based renewable grants that are NIH’s
primary grant mechanism, accounting for about
half of its extramural grant spending.Of the grants
in our sample, 56% are for new projects; the re-
maining successfully competed for renewal. We
focus on funded grants because funding is likely
to have direct effect on research productivity, mak-
ing it difficult to infer the success of peer review by
comparing funded andunfunded grants. Because
our sample grants have the same funding status,
we can attribute any remaining relationshipbetween
scores and outcomes to peer review, rather than
funding. Because grants are almost always funded
in order of their score, there is relatively little scope
for selection on unobservables to introduce bias.

Our primary outcome variables are (i) the total
number of publications that acknowledge grant
support within 5 years of grant approval (via
PubMed); (ii) the total number of citations that
those publications receive through 2013 (viaWeb
of Science); and (iii) patents that either directly
cite NIH grant support or cite publications ac-
knowledging grant support [via the U.S. Patent
and Trademark Office (USPTO)]. These publica-
tion, citation, and patent outcomes are designed
to reflect NIH’s stated goals of rewarding research
with high scientific and technical merit.
We also measure applicant-level characteristics:

an investigator’s publication and grant history, edu-
cational background, and institutional affiliation.
We match investigators with publications using
their full last nameand their first andmiddle initials

(14). We track the number of articles an applicant
published in the 5 years before submitting her ap-
plication, as well as the impact of those publica-
tions asmeasuredby the citations theyhave received
by the time the application is evaluated. We iden-
tify “high-impact”publications as being among the
top 0.1%, 1%, and 5% most cited, compared with
articles published in the same year. To more pre-
cisely assess the quality of an applicant’s ideas, we
repeat this exercise for articles in which the appli-
cant is a first or last author only. Our regression
results include separate controls for each type of
publication: any authorship position, and first or
last author publications. By counting only citations
received up to the date of grant review, we ensure
that ourmeasures contain only information available
to reviewers at the time they evaluate the application.
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Table 1. Do peer-review scores predict future citations and publications?
Each reported figure is the coefficient on scores from a single Poisson
regression of grant outcomes on NIH peer-review scores; standard errors
are reported in parentheses. The actual sample size used per regression
depends on the number of nonzero observations for the dependent variable.
The independent variable is the percentile score. “Future citations” refers to
the total number of citations, to 2013, that accrue to all publications that
acknowledge funding from a given grant. “Future publications” refers to the
total number of such publications. Subject-year controls refer to study section

by fiscal year fixed effects, as well as NIH institute fixed effects. PI publication
history includes controls for number of past publications, number of past
citations, and number of past hit publications. PI career characteristics include
controls for degrees and experience (time since highest degree). PI grant
history controls for number of previous R01s and non-R01 NIH funding. PI
institution and demographics control for the rank of the PI’s institution, as well
as gender and some ethnicity controls. Standard errors are clustered at the
study section year level. *, statistical significance at the 10% level; **, 5% level;
***, 1% level.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Dependent variable: Future citations
Independent variable:

NIH percentile score
–0.0203*** –0.0215*** –0.0162*** –0.0164*** –0.0162*** –0.0158***

(0.0006) (0.0008) (0.0007) (0.0007) (0.0007) (0.0007)
N 137,215 136,076 136,076 128,547 128,547 128,547

Dependent variable: Future publications
Independent variable:

NIH percentile score
–0.0155*** –0.0091*** –0.0076*** –0.0077*** –0.0076*** –0.0075***

(0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003)
N 137,215 136,111 136,111 128,580 128,580 128,580
Controls
Subject-year X X X X X
PI publication history X X X X
PI career characteristics X X X
PI grant history X X
PI institution/demographics X

Fig. 1. Scatterplot of percentile scores and grant outcomes.The left panel plots the relationship between percentile scores and citations associated with a
grant. Each dot represents a single grant. The right panel does the same for total publications. Extreme outliers with more than 10,000 citations or 200
publications are not displayed here.
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We observe whether an applicant has anM.D.,
Ph.D., or both, as well as the year in which she
received her final doctoral degree.We aremissing
degree and experience information for 0.45% and
7.16% of our sample, respectively; we include two
separate indicators for missing these data. We
measurewhether this applicantpreviously received
an R01 grant and whether the applicant has re-
ceived any previousNIH funding. Using the name
of the principal investigator (PI), we employ a
probabilistic algorithmdeveloped byKerr to deter-
mine applicant gender and ethnicity (Hispanic or
Asian) (15, 16, 17). We rank applicants’ institu-
tions by the number of NIH grants received over
our study period and measure whether each appli-
cant is from a top 5-, 10-, 20-, or 50-ranked insti-
tution.Weareunable todetermine the institutional
affiliation of 14% of investigators; we include an
indicator variable formissing institution information.
Consistent with previous work, there is sub-

stantial dispersion in research output even among

the relativelywell-developed projects that receive
NIH R01 funding (5). The median grant in our
sample received 116 citations to publications ac-
knowledging the grant; the mean is more than
twice as high, 291, with an SD of 574. This varia-
tion in citations underscores the potential gains
from being able to accurately screen grant appli-
cations on the basis of their research potential.
Our first set of results describes peer review’s

value-added for identifying research likely to re-
sult in many publications or citations. Table 1 re-
ports results from Poisson regressions of future
outcomes on peer-review scores, with different
controls for an applicant’s previous performance.
The supplementarymaterials describemany addi-
tional robustness checks.
Model 1 of Table 1 reports, without any control

variables, the percentage change in the number
of citations and publications associated with a
grant, given a one point increase in its percentile
score. We find that NIH evaluations are statisti-

cally related to grant quality; our estimated coef-
ficients indicate that a one percentile point worse
peer-review score is associated with 1.6% fewer
publications and 2% fewer citations. To consider
the magnitude of these findings more clearly, we
will describe our results by reporting howpredicted
outcomes change with a 1-SD (10.17 point) worse
percentile score; inModel 1, a 1-SDworse score is
associatedwith a 14.6%decrease in grant-supported
research publications and a 18.6% decrease in
citations to those publications (P < 0.001). This
calculation is based on the overall SD in percentile
score among funded grants, unconditional on PI
characteristics (18). Figure 1 illustrates the raw re-
lationship between scores and citations and publi-
cations in a scatterplot; the plot suggests a negative
sloping relationship (recall that higher percentile
scores indicate less favorably reviewed research).
There are potential concerns with interpreting

the unadjusted relationship between scores and
outcomes as a measure of peer review’s value.
Some grants may be expected to produce more
citations or publications and thus appear higher
quality, independent of their true quality. Older
grants have more time to produce publications
that in turn havemore time to accrue citations. A
publication with 100 citations may be average in
one field but exceptional in another.
Model 2 of Table 1 addresses these concerns by

including detailed fixed effects for study sections
by year cells and NIH institutes. The inclusion of
these fixed effects means that our estimates are
based only on comparisons of scores and out-
comes for grants evaluated in both the same
fiscal year (to account for cohort effects) and in the
same study section (to account for field effects).
We also include NIH institute-level fixed effects
to control for differences in citation and publica-
tion rates by fields, as defined by a grant’s area of
medical application. Controlling for cohort and
field effects does not attenuate our main finding.
For a 1-SD (10.17 point) worse score, we expect an
8.8%decrease in publications and a 19.6%decrease
in citations (both P < 0.001). This suggests that
scores for grants evaluated by the same study
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Fig. 2. Smoothed scatterplots of percentile scores and residual grant outcomes. These figures
display smoothed scatterplots of the nonparametric relationship between unexplained variation in grant
outcomes and percentile score, after accounting for differences in field of research, year, and applicant
qualifications. The left panel plots the relationship between percentile scores and residual citations
associated with a grant.The right panel does the same for residual publications.

Table 2. Do peer-review scores predict hit publications and follow-on patents? Each reported figure is the coefficient on scores from a single Poisson
regression of grant outcomes on NIH peer-review scores; standard errors are in parentheses. High-impact publication is given by the count of publications
acknowledging the grant that receive more citations than all but 0.1%, 1%, or 5% of publications from the same year. Direct patents are those that acknowledge
funding from a grant; indirect patents are those that cite publications that acknowledge funding from a grant.We control for the same variables as described in
Model 6 of Table 1.

Dependent variable: High-impact publications Dependent variable: Patents

Top 0.1% Top 1% Top 5% Direct Indirect
(1) (2) (3) (4) (5)

Independent variable:
NIH percentile score

–0.0246*** –0.0209*** –0.0172*** –0.0153*** –0.0149***

(0.0025) (0.0014) (0.0009) (0.0015) (0.0022)
N 88,795 118,245 125,021 122,850 92,893
Controls
Subject-year X X X X X
PI publication history X X X X X
PI career characteristics X X X X X
PI grant history X X X X X
PI institution/demographics X X X X X
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section in the same year and assigned to the same
NIH institute are better than randomly allocated.
Wemay observe this pattern, however, if review-

ers simply give good scores to applicantswith strong
research credentials, and applicants with strong
credentials generally tend toproducebetter research.
Model 3 of Table 1 adds controls describing a PI’s
publication history in order to askwhether study
section scores contain information about the qual-
ity of an application that could not be predicted
by simply examining a PI’s curriculum vita.
Specifically, we include the following additional

control variables: (i) the number of articles pub-
lished in the past 5 years; (ii) the total number of
citations those articles have received up to the
year of grant review; (iii) three variables describ-
ing the number of top 0.1%, 1%, and 5% articles
that the PI has published in the previous 5 years;
and (iv) alternate versions of these variables con-
structed only with the subset of publications for
which the applicant was a first or last author.
Controlling for publication history attenuates
but does not eliminate the relationship: a 1-SD
(10.17 point) worse score is associatedwith a 7.4%
decrease in future publications and a 15.2% de-
crease in future citations (both P < 0.001).

The association betweenbetter scores and better
outcomes could also be explained by the Matthew
effect, a sociological phenomenonwherein credit
and citations accrue to established investigators
simply because they are established, regardless of
the true quality of their work (19, 20). Were this
the case, more connected applicants may receive
better scores andmore citations regardless of the
true quality of their work. Our approachmay thus
credit peer review for responding to prestige, rather
than the underlying quality of an applicant’s ideas.
Model 4 controls for the PI’s experience by

adding indicators for whether the applicant has
an M.D., Ph.D., or both, as well as a series of
indicator variables capturing how many years
have elapsed since receiving her terminal degree.
If reviewers were simply giving better scores to
candidates with more experience or skill writing
grant proposals and publishing papers, then we
would expect scores to become less predictive of
future research output once we control for M.D./
Ph.D. status and time since degree. Instead, our
estimated relationship betweenpeer-review scores
and outcomes remains unchanged.
Model 5 considers the possibility that peer re-

viewers may be rewarding an applicant’s grant

proposal writing skills rather than the underly-
ing quality of her work. Specifically, we include
variables controlling for whether the PI received
NIH funding in the past, including four indica-
tors for having previously received one R01 grant,
two or more R01 grants, one NIH grant other
than an R01, and two ormore other NIH grants.
To the extent that reviewers may be responding
to an applicant’s experience and skill with pro-
posal writing, we would expect the inclusion of
these variables reflecting previous NIH funding
to attenuate our estimates of value-added.We find,
however, that including these variables does not
substantively affect our findings.
Finally, in Model 6, we also control for insti-

tutional quality, gender, and ethnicity, to capture
other potentially unobserved aspects of prestige,
connectedness, or access to resources that may
influence review scores and subsequent research
productivity. Our estimates again remain stable:
comparing applicants with statistically identical
backgrounds, the grant with a 1-SD worse score
is predicted to have 7.3% fewer future publications
and 14.8% fewer future citations (both P < 0.001).
Across Models 3 to 6, the estimated relation-

ship between peer-review scores and outcomes
remains remarkably stable, even as we add more
covariates that describe an applicant’s past accom-
plishments, prestige, proposal-writing skill, and
professional connections. Although these variables
certainly cannot capture every potential source
of omitted variables bias, the stability of our results
suggests that political connections and prestige are
not a primary driver of peer review’s value-added.
Next, we explore whether reviewers’ expertise

enables them to identify the strongest applica-
tions or to more efficiently screen out weaker
applications. We use a local linear regression
model to nonparametrically identify the relation-
ship between peer-review score and research qual-
ity. This flexibility will allow the predictive power
of peer-review scores to differ at each point along
the score spectrum.We implement this approach
in two steps, which are described in detail in the
supplementary materials. First, we construct the
residuals from a linear regression of research out-
comes on all of the explanatory variables inMod-
el 6, excluding the study section percentile score
itself. These residuals represent the portions of
grants’ citations or publications that cannot be
explained by applicants’ previous qualifications
or by application year or subject area (as detailed
above).We thenproduce a locallyweighted, linearly
smoothed scatterplot relating peer-review scores
to these residual citations and publications.
Figure 2 shows that peer reviewers add value

by identifying the strongest research proposals.
For all percentile scores less than 50 (the vast ma-
jority of awarded grants), worse scores are asso-
ciated with lower expected residual citations and
publications. The relationship is particularly
steep at very low percentile scores, suggesting
that study sections are particularly effective at
discriminating quality among verywell-reviewed
applications.
One notable exception occurs for very poorly

scored applications—thosewith percentile scores
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Fig. 3. Smoothed
scatterplots of
percentile scores and
residual high- and
low-citation publica-
tions.These figures
display smoothed scat-
terplots of the non-
parametric relationship
between unexplained
variation in grant out-
comes and percentile
score, after accounting
for variation in field of
research, year, and
applicant qualifications.
Each panel reports
results on the number
of residual publications
in the indicated
performance bin.

RESEARCH | REPORTS
on August 8, 2018
 

http://science.sciencem
ag.org/

Downloaded from
 

http://science.sciencemag.org/


over 50—that were nonetheless funded. In this
range, worse review scores are associated with
higher citation counts. These applications con-
stitute about 1% of funded applications and are
highly unlikely to have met the standard award
threshold but were instead funded “out of order.”
We find higher average quality for this set of
selected grants, suggesting that when program
officers make rare exceptions to peer-review de-
cisions, they are identifying a small fraction of
applications that end up performing better than
their initial scores would suggest.
Our final analysis explores whether peer re-

viewers’ value-added comes from being able to
identify transformative science, sciencewith con-
siderable applied potential, or from being able to
screen out very low-quality research. We define a
“hit” publication as among the top 0.1%, 1%, or
5%most cited publications in its cohort, using all
citations a publication receives through 2013. To
explore whether reviewers have value-added in
terms of identifying research with practical appli-
cations, we track the number of patents that
explicitly acknowledge NIH funding. The major-
ity of NIH grants, however, do not directly result
in patents. Thus, we also count the number of pat-
ents that cite research funded by a grant (indirect
patenting).We construct this variable by linking
grants to publications using grant acknowledg-
ment data and then applying a fuzzy matching
algorithm that identifies publications cited by
USPTO patents (21). This allows us to identify
patents that cite publications that in turn acknowl-
edge a grant. Importantly, this process (described
further in the supplementary materials), allows
us to identify patents regardless of whether those
patents are assigned to the same investigator
funded by theNIHgrant. Indeed,most often these
patents are held by private firms (22).
As reported in Table 2, peer-review scores have

value-added identifying hit publications and re-
search with commercial potential. A 1-SD (10.17
points) worse score is associated with a 22.1%,
19.1%, and 16.0% reduction in the number of
top 0.1%, 1%, and 5% publications, respectively.
These estimates are larger inmagnitude than our
estimates of value-added for overall citations,
especially as we consider the very best publica-
tions. The large value-added for predicting tail
outcomes suggests that peer reviewers are more
likely to reward projects with the potential for a
veryhigh-impactpublicationandhave considerable
ability to discriminate among strong applications.
A 1-SD worse percentile score predicts a 14%

decrease in both direct and indirect patenting.
Because of the heterogeneous and potentially long
lags between grants and patents, many grants in
our samplemay one day prove to be commercially
relevant even if they currently have no linked
patents. This time-series truncationmakes it more
difficult to identify value-added with respect to
commercialization of research and means that
our estimates are likely downward biased.
Finally, we investigate the nonparametric rela-

tionship between percentile scores and publica-
tion outcomes, testing which score ranges are
associated with the highest numbers of “hit”

publications, ranking at the top of the citation
distribution, and which score ranges are associ-
ated with the highest numbers of “miss” publica-
tions, ranking near the bottom of the distribution.
We follow the same local linear regression smooth-
ing procedure outlined above and described in
more detail in the supplementary materials.
Figure 3 shows that low percentile scores are

consistently associated with higher residual num-
bers of hit publications, variation unexplained
by the applicant’s background or field of study.
The relationship between scores and residual re-
search outcomes is steepest among the most well-
reviewed applications. For example, funded grants
with percentile scores near 0 are predicted to
produce 0.05 more publications in the top 0.1%
of the citation distribution, comparedwith appli-
cations scored near the 10th percentile (holding
constant applicant qualifications and field).
Although thismay seem like amodest increase,

there is a small number of such hit publications,
so a 0.05 increase in their number corresponds
to a doubling of the mean number of top 0.1%
publications arising from a grant. This relation-
ship between scores and hit publications becomes
weaker among applications with less competitive
scores; a 10-percentile point difference in scores
in the range of 20 to 30 would predict only a
0.0004 difference in the number of top 0.1% pub-
lications. This finding runs counter to the hypo-
thesis that, in light of shrinking budgets and
lower application success rates, peer reviewers
fail to reward those risky projects that are most
likely to be highly influential in their field (1, 2).
We don’t find evidence that the peer-review

system adds value beyond previous publications
and qualifications in terms of screening out low-
citation papers. Better percentile scores are asso-
ciated with slightly more publications in the
bottom 50% of the citation distribution. There
is no discernible relationship between residual
publications in the bottom 20% and peer-review
score among the funded grants in our sample, sug-
gesting thatwhile these less influential anticipated
publications are not rewarded by the peer-review
system, they are also not specifically penalized.
Our findings demonstrate that peer review

generates information about the quality of appli-
cations that may not be available otherwise. This
does not mean that the current NIH review sys-
tem would necessarily outperform other alloca-
tion mechanisms that do not rely on expert peer
evaluations. Our analysis focuses on the relation-
ship between scores and outcomes among funded
grants; for that reason, we cannot directly assess
whether the NIH systematically rejects high-
potential applications. Our results, however, sug-
gest that this is unlikely to be the case, because
we observe a positive relationship between better
scores and higher-impact research among the set
of funded applications.
Although our findings show that NIH grants

are not awarded purely for previous work or elite
affiliations and that reviewers contribute valuable
insights about the quality of applications, mis-
takes and biases may still detract from the qual-
ity of funding decisions.We have not included an

accounting of the costs of peer review, most no-
tably the time investment of the reviewers. These
bibliometric outcomes may not perfectly capture
NIH objectives or be the only measures relevant
for evaluating social welfare; ideally, wewould like
to link grants with health and survival outcomes,
but constructing those measures is difficult and
beyond the scope of this paper. Future research
may focus on whether the composition of peer-
review committees is important to determining
their success, including evaluator seniority and
the breadth and depth of committee expertise.
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A NIH Peer Review Background

The National Institutes of Health (NIH) is the primary organization within the United States

government with responsibilities for health-related research. The NIH is the single largest funder of

biomedical research, with an annual budget of approximately $30 billion dollars. More than 80%

of the total budget supports extramural research through competitive grants that are awarded to

universities, medical schools, and other research institutions, primarily in the United States.

In this section, we describe NIH funding policies as they were during the majority of our

sample period.

1
Requests for proposals identify priority areas, but investigators are also free to

submit applications on unsolicited topics under the extramural research program. Prior to the

peer review reform in 2006, applications were 25 pages long; they were shortened to 12 pages.

All applications are assigned to a review committee comprised of scientific peers, generally known

as a study section. Peer reviewers are asked to ignore budgetary issues, limiting their attention

to scientific and technical merit on the basis of five criteria: (1) significance; (2) approach; (3)

innovation; (4) investigator skill; and (5) conducive environment. These are still the criteria used

today.

Within a study section, applications are assigned to 1 to 3 reviewers who read the application

and provide initial scores. Based on these scores, approximately 40 to 50% of applications are

“triaged,” or rejected without further discussion. The remaining applications are discussed at the

meeting of the full study section. At this meeting, initial reviewers are typically asked to discuss

an application and present their scores. This is followed by an open discussion by all reviewers and

a brief period for everyone to revise their initial scoring based on the group deliberations before

anonymously submitting their final scores.

The overall priority score for the proposal is based on the average across all study section

members. Prior to 2006, these scores were from 1.0 (best) to 5.0 (worst) in increments of 0.1.

2

Scores are then normalized within review groups through the assignment of percentile scores to

facilitate funding decisions. This paper uses this final percentile score as our measure of the study

section’s evaluation of a grant application.

1
In 2006, NIH updated its peer review process to require, among other things, shorter applications and a less

granular scoring system. Since our data covers the period from 1980 to 2008, the great majority of the applications

we observe pre-date these changes. The fundamental features of the NIH peer review process, including the number

and type of reviewers and a numeric scoring system were not changed by these 2006 revisions; as a result we do not

expect that the efficacy of the peer review process was substantially altered by these revisions, but we note differences

between the old and new systems.

2
After the 2006 reform, these scores were from 1 (best) to 9 (worst) in increments of 1.
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After scores have been assigned, applications are then sorted to the individual institutes re-

sponsible for funding the application. (A single study section will often contain applications assigned

to multiple institutes for final funding.) Individual institutes make funding decisions by rank order-

ing applications according to their percentile scores and funding the lowest (best) scores first then

proceeding until funding is exhausted. There are a few exceptions to this funding process: special

consideration is given to early investigators who have not previously received R01 funding; and the

institute may occasionally choose to fund “out of order” from the percentile score ranking in response

to an appeals process or exceptional circumstances not recognized by the initial committee.

B Data and Variable Construction

B.1 Sample Details

We make use of data from the following sources: (a) administrative data on NIH-funded

grants from the NIH IMPAC database; (b) life science publication data from the National Library of

Medicine’s PubMed database and Thomson Reuter’s Web of Science; and (c) USPTO data on patent

applications. Using these datasets we construct outcome variables measuring the research products

associated with a given grant and control variables for the prior performance and characteristics of

the applicant.

Our analysis includes all new and competing renewal R01 grants that received a peer review

score and were successfully funded by the NIH between FY1980 and FY2008. Table S1 describes

the characteristics of these grants in more detail. We restrict our sample to only awarded grants

to avoid potential bias from unfunded projects whose research outcomes may be diminished by the

lack of funding award.

One may be concerned that examining only funded grants will lead to selection bias in our

sample. Selection bias occurs when funded and unfunded grants that look similar on observables

nonetheless differ on unobservables in a way that impacts their future performance. At the NIH,

this type of selection is unlikely to be a large concern because, in most cases, the only variables

that determine whether a grant application is funded is its Institute, its funding cycle cohort, and

its percentile score. These are all variables that we observe and include in our regression.
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We need only be concerned about selection bias due to cases when a grant’s Institute, year,

and score are not the sole determinants of its funding status. This is in practice quite rare.

3
If

the NIH makes exceptions to the payline and funds applications that it thinks have particularly

high potential despite weak peer review scores, then this type of classical sample selection will

tend to attenuate our estimated relationship between scores and grant outcomes (23 ). We explore

this potential bias in Section D.4 by using an “identification at infinity” approach (see (24 )) and

restricting the sample to only very highly scored grants with very high funding probabilities. The

logic underlying this specification is that selection into being funded or not should not impact our

estimates for grants whose scores are so low that they are nearly always funded.

B.2 Measuring the Performance of Funded Grants

Our outcome measures are constructed as follows. We first match publications to grants using

the unique grant identifier provided in the IMPAC data and PubMed grant acknowledgment data.

In IMPAC, a grant is identified by a full grant number comprised of different parts, for example

“1R01CA000001-1” This tells us the type of grant (new “1” or competing renewal “2”), the grant

mechanism (in this case, “R01”), the funding Institute (“CA” is the National Cancer Institute), the

project number (“000001”) and the year of support (the first year, “1”). We match a grant to the

publications that acknowledge this funding source and are published within 5 years after application

approval. Publications citing multiple NIH R01 grants are matched to both applications.

Our grant application data include only years in which a grant was subject to a competitive

evaluation. The goal behind our matching strategy is to find all publications arising out of proposed

research evaluated by a study section at a given point in time. As such, if a publication cites grant

support from a year in which it was automatically renewed, we attribute that publication to the

nearest previous competitive year. For example, suppose that a grant is approved in 1999 and lasts

through 2002. If a publication cites support from that grant for the year 2000, we would match that

publication to the 1999 application, the year in which the 2002 funding was actually adjudicated.

There are also cases in which publications cite partial grant numbers, usually the Institute

and project number but not the support year. In this case, we attribute this publication to the

nearest competitive cycle prior to its publication, but not more than 5 years prior to the last

automatic renewal. For example, consider a grant initially approved in 1999 and renewed in 2002.

3
We do not have data on which specific grants are funded out of order but the NIH currently funds fewer than

<3% of cases out of order.
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If a 2005 publication cites the sample project number but does not specify the funding year, we

would attribute it to the 2002 review year. If a 2010 publication cites that project number, we

would attribute it to neither cycle because 2010 is more than 5 years after the last renewal year (in

this case, 2002).

After matching grants to publications using grant acknowledgements, we track the citations

to those publications using data from Web of Science. We construct several additional outcome

measures with this citation data. The first outcome is the total number of forward citations accruing

to the linked set of publications, through 2013. In addition, we construct a set of variables tracking

the number of “hit” publications associated to a grant. A publication is deemed a hit if it is cited in

the 99.9th, 99th, or 95th percentile of life science articles published in the same year; we construct

one variable for each threshold. Because we use grant acknowledgement data from PubMed and

citation data from Web of Science, we construct a crosswalk between these two datasets. This

means that our outcome variables, with the exception of our simple publication count, include only

publications indexed in both PubMed and Web of Science.

We test the robustness of our main findings to two alternative rules for linking grant appli-

cations to publication outcomes. First, since there is the potential for long lags in completing and

publishing research, we report alternative results in Section D.2 that attribute up to 10 years of

publications acknowledging grant support to the initial application. Second, since some researchers

may fail to acknowledge their funding source in published papers, we also test an alternative match-

ing strategy. In Section D.2 below, we match each application to all publications authored by the

PI within 5 years following grant approval and report analogous regression results for this outcome.

These alternative publication measures are linked to citation counts using the same methodology

outlined above.

The final set of outcome variables measure the patent output of grants. We match grants to

patents in two ways. The first is to examine the set of patents that directly acknowledge finan-

cial support from the NIH. Beginning in 1981, the Bayh-Dole Act required that patents report all

sources of federal support. The second is to identify patents that build on the knowledge produced

by a particular grant. This outcome captures the broader commercial relevance of a grant appli-

cation, which is a characteristic that reviewers and policymakers may care about. For each grant,

we construct the number of patents that cite publications acknowledging grant support. This ap-

proach to linking grants and patents does not require a restrictive assumption that the commercial

applications of a research project match the original domain of the research; it will capture the full
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range of downstream applications, including potentially unanticipated spillovers to other areas of

research.

Determining whether patents cite publications is more difficult than tracing patent citations:

while the cited patents are unique seven-digit numbers, cited publications are free-form text (/tex-

tit25). Moreover, the USPTO does not require that applicants submit references to literature in

a standard format. For example, Harold Varmus’s 1988 Science article “Retroviruses” is cited in

29 distinct patents, but in numerous different formats, including: “Varmus. “Retroviruses” Science

240:1427-1435 (1988)" (in patent 6794141) and “Varmus et al., 1988, Science 240:1427-1439" (in

patent 6805882). As this example illustrates, there can be errors in author lists and page numbers.

Even more problematic, in some cases certain fields (e.g. author name) are included, in others they

are not. Journal names may be abbreviated in some patents, but not in others.

To address these difficulties, we applied a matching algorithm developed by Azoulay, Graff

Zivin and Sampat that compares each of several PubMed fields—first author, page numbers, volume,

and the beginning of the title, publication year, or journal name—to all references in all biomedical

and chemical patents issued by the USPTO since 1976 (21 ). The sample of biomedical and chemical

patents were identified by using the patent class-field concordance developed by the National Bureau

of Economic Research (26 ). We considered a dyad to be a match if four of the fields from PubMed

were listed in a USPTO reference. Overall, the algorithm returned 1,058,893 distinct PMIDs cited in

distinct 322,385 patents. Azoulay, Graff Zivin and Sampat discuss the performance of this algorithm

against manual searching, and tradeoffs involved in calibrating the algorithm (21 ).

B.3 Measuring the Prior Qualifications of Applicants

We also construct variables describing an applicant’s qualifications at the time of grant review.

We match an applicant’s name to his or her publication history using PubMed data. For each

applicant, we construct the total number of publications she has published in the previous 5 years;

and three variables describing the number of hit publications, those that fall in the 99.9th, 99th, or

95th percentile of citations among life science articles published in the same year. We repeat this

exercise for publications in which the PI is a first or last author.

We calculate citation percentiles using citations received up to the time of grant review, as

opposed to counting all citations received through 2013. In our main analysis, we restrict to matches

based on first and middle initials as well as full last names. This still leaves room for ambiguity;

Table S6 shows that our results are robust to restricting to applicants with rarer names. For all
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our publication-based variables, we restrict to original research articlees; this excludes, for instance,

reviews and letters to the editor.

In addition to publication history, we also construct an applicant’s grant history using the NIH

IMPAC database. We track whether an applicant has received an R01 in the past or whether she

had received any non-R01 funding from the NIH. An applicant is counted as having received prior

NIH funding only if she is listed as the primary recipient; this would not include applicants who

have received fellowships through another investigator.

Our analysis also includes controls for a PI’s degrees—an MD, Ph.D., or both—as well as for

her institutional affiliation. The latter is available for the majority of the grant recipients in our

sample (92%). We group these institutions into tiers, ranking them based on the total number of

NIH grants the institution has received over our study period. We then assign the PI’s institution

to one of 5 categories: top 5, top 10, top 25, top 50, and lower than 50.

B.4 Summary Statistics

Summary statistics are reported in Table S1 and Figure 1. Our sample includes 137,215

awarded R01 applications, funded by 21 NIH institutes, in 617 study sections over 29 years. 56%

of applications are new applications, and the remainder of the sample are competing renewals. The

average peer review score is 14.22 percentile points, and the average award amount is $1,220,731.

Figure 1 shows that, consistent with prior work, there is substantial dispersion in research

output even among the relatively well-developed projects that receive NIH R01 funding (5 ). This

is most readily apparent when examining the distribution of citations associated with a grant: the

median grant in our sample has received 116 citations to publications acknowledging the funding

award, but the mean is more than twice as high, 291, with a standard deviation of 574. This

variation in citations underscores the potential gains from being able to accurately screen grant

applications on the basis of their research potential.

As reported in Table S1, each grant in our sample is acknowledged by an average of 7.4

publications within 5 years; the median number of publications is 5. As of 2013, the average

number of citations accruing to grant-acknowledging publications is 291, and the median number

of citations is 116. While the median number of publications in the top 0.1%, 1%, and 5% of

the distribution (ranked by citations) is 0, the averages suggest that highly successful publications

are not an uncommon outcome of NIH funded work; for example, each grant is associated with
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0.6 publications in the top 0.1% on average. Similarly, the median number of patents directly or

indirectly acknowledging the NIH grant is 0, but the averages are 0.10 and 4.75, respectively.

Past performance variables indicate that PIs typically have a long and well-cited publication

history. The median number of first or last authored publications within the past 5 years is 12,

and median citations to those publications at the time of grant application is 62. 79% of applicants

have a Ph.D. degree (including those who also have MD’s), and 70% of applicants have received

R01 funding in the past. 24% of applicants are associated with a top 10 research institution, when

ranked by the number of NIH grants awarded to that institution.

C Econometric Models

We use poisson regression models to test whether peer review scores predict outcomes of

grant-funded research, after conditioning on the principal investigator’s past research productivity,

institutional affiliation, and field of research. We call this relationship peer review’s value added

following the economics of education literature that measures the value of a teacher’s contribution

to improving student achievement, after taking into account that student’s prior performance and

demographic characteristics (27-29 ). The poisson regressions model the count structure of our

outcome variables, including numbers of citations, publications, and patents associated with each

funded grant. Standard errors are clustered at the study session-year level. The poisson regressions

take the following form:

E(Outcomei|Scorei,Xi) = exp(�Scorei +Xi�) (1)

Outcomei is a measure of the grant application i’s eventual success, for example, the number of

publications acknowledging the grant or the number of citations to those publications. The key

independent variable of interest is Scorei which measures the percentile score assigned by the peer

review study section. Xi is a vector of control variables which vary by regression specification as

outlined below. Each successive model adds further control variables.

1. Model 1 (first reported in Table 1 Column 1) is a parsimonious regression that simply tests

whether better peer review scores predict better research outcomes, without the inclusion of

any control variables. We successively add control variables to the model, testing whether the
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observed relationship continues after conditioning on additional characteristics of the research

field and investigator.

2. Model 2 (Table 1 Column 2) includes 3858 fixed effects for study section by year interactions

as well as fixed effects for the 27 different funding institutes within the NIH. The inclusion of

these fixed effects accounts for differences in publication and citation counts across academic

disciplines.

3. Model 3 (Table 1 Column 3) adds control variables for the principal investigator’s past research

productivity over the past 5 years: the number of publications, the number of citations these

publications have received at the time of grant application, and whether any of the publications

fall into the top 0.1%, 1%, or 5% of papers published that year at the time of application.

These variables are included separately for first and last authored publications and for all

publications.

4. Model 4 (Table 1 Column 4) adds controls for the principal investigator’s education: degree

type and experience. These include whether the PI has an M.D., Ph.D., or both, and the

number of years since completing his terminal degree.

5. Model 5 (Table 1 Column 5) adds controls for whether the principal investigator has received

NIH funding in the past, including four indicators for having received 1 R01 grant, 2 or more

R01 grants, 1 NIH grant other than an R01, and 2 or more other NIH grants.

6. Model 6 (Table 1 Column 6) is our final regression specification and it adds indicators for

the PI’s institutional quality, gender, and ethnicity. Our measures of institutional quality

include indicators for whether his institution is in the top 5, top 10, top 20, or top 50 institu-

tions ranked by total number of awarded grants in our sample. Demographic characteristics

are probabilistically matched by investigator name and include indicators for female, asian,

hispanic, or missing ethnicity.

Table 1 shows the coefficients on peer review scores for each of these models. Table S2 displays

coefficients on all of the covariates from each poisson regression with citations as the outcome

measure; Table S3 does the same with publications as the dependent variable.

The second type of analysis presented in the paper assesses the nonparametric relationship

between grant outcomes and peer review scores, after accounting for differences in publication
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records that are due to the applicant’s field and academic qualifications. For this analysis, we begin

by running linear fixed effects regressions which take the following form:

Outcomei = Xic+ ei (2)

The control variables included in Xi match the Model 6 specification described above, but the re-

gression excludes percentile score as an explanatory variable. The control variables include study

section-year fixed effects, institute fixed effects, gender and ethnicity indicators, past research pro-

ductivity measures, and education, employment measures. We calculate residuals from this regres-

sion as the difference between each grant’s realized outcome and the predicted outcome. We then

use a locally weighted scatterplot smoothing technique to display the relationship between the vari-

ation in grant outcomes unexplained by the linear regression model and the peer review percentile

scores.

In order to smooth the residual values, we run a series of linear regressions of the residualized

outcomes on percentile score. We run a separate regression centered around each observation in

our dataset; these regressions include up to 20% of the sample that is nearest to this observation’s

percentile score. Weights are applied so that points with more distant observations receive less

weight according to the tricube formula.

4
The predictions of this set of local, weighted regressions

are the smoothed values of the residual outcome variable, which we then use in a scatterplot graphed

against percentile scores. Results of this analysis are reported in Figures 3 and 4 and discussed in

the main body of the paper.

D Robustness checks and additional results

In this section, we first interpret in more detail the coefficients on the control variables in our

main set of regression results. Then, we describe a series of robustness checks investigating whether

our findings are sensitive to the control variables included in the analysis, the sample selected, or

the choice of regression model.

4
In particular, for a regression centered around the observation (Scorei, Outcomei) the tricube weight takes the

following form:

wj =

(
1�

✓
|Scorej � Scorei|

1.0001max(Scorei+ � Scorei, Scorei � Scorei�)

◆3
)3

(3)

where Scorei� is the smallest value of Score included in the regression, and Scorei+ is the largest.
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D.1 Further discussion of main results

Results on the primary coefficient of interest, peer review percentile score, are discussed in the

main body of the paper. Table S2 Column 6 displays results describing the relationship between PI’s

past accomplishments and citations to grant-acknowledging publications, after controlling for the

percentile score. In particular, we see that competing renewals receive 49% more citations, which

may be reflective of more citations accruing to more mature research agendas (P<0.001). Applicants

with M.D. degrees amass more citations to their resulting publications (P<0.001), which may be a

function of the types of journals they publish in, citation norms, and number of papers published

in those fields. Applicants from research institutions with the most awarded NIH grants garner

more citations (P<0.001), as do applicants who have previously received R01 grants (P<0.001).

Lastly, researchers early in their career tend to produce more highly cited work than more mature

researchers (P<0.001).

Table S3 Column 6 displays similar results, but with the outcome variable being total pub-

lications which acknowledge the grant, published within 5 years of the grant award. Patterns are

similar to those noted above for total citations, with the exception that applicants from top-ranked

research institutions do not seem to publish more prolifically (conditional on their peer review scores

and past publication and citation performance), but rather receive more citations per publication.

D.2 Robustness to alternative outcome measures

In this section, we test three alternative methods of linking grant applications to future pub-

lications. Results are reported in Table S4. These regressions match the Model 6 specification

and include a full set of controls for study section by year, institute, publication history, degree,

experience, previous grant receipt, demographics, and institutional affiliations.

1) Table S4 Column 1 replicates results from Table 1 column 6 in the main body of the paper.

Recall that grants are linked to all publications acknowledging grant support, published within 5

years of grant approval.

2) Table S4 Column 2 reports results with an alternate outcome measure that links grants to

all publications acknowledging the grant and published within 10 years. This outcome extends the

time frame during which we track grant publications. We find a very similar coefficient relating

percentile score to future citation counts, just slightly lower at -0.0153 compared to -0.0158 in the

original specification.
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3) Table S4 Column 3 reports results that use an alternative procedure for linking grants to

publications; rather than relying on grant acknowledgements, we instead attribute all publications

authored by the principal investigator within 5 years to the grant itself. This broader match will

eliminate any potential bias if investigators who are more diligent about appropriately acknowledging

grant funding are also more likely to receive well-scored grants. However, the broader match will

also lead us to attribute some publications unrelated to the grant proposal, and thus we expect

the estimated coefficients to be attenuated towards zero since peer review committees were not

evaluating the potential of these proposals. Consistent with this hypothesis, we find a one point

improvement in peer review score is associated with a 1% more citations, which is smaller than the

1.6% in the main specification but still significant at the 0.1% level.

4) Table S4 Column 4 repeats the broader name-based matching of applications to future

publications, but extends the match to include all publications authored by the PI within 10 years

following grant approval. These results are very similar to the Column 3 findings; a 1 point im-

provement in peer review score is associated with 1% increase in citations.

D.3 Robustness to inclusion of additional control variables

In this section, we probe the robustness of our results to the inclusion of additional control

variables. Table S5 reports results. Except as otherwise noted, these regressions begin with the

Model 6 controls as the baseline covariates and augment them with additional measures as described

below.

1) Table S5 Column 1 replicates results from Table 1 column 6 in the main body of the paper.

Recall that this regression controls for study section by year, institute, publication history, degree,

experience, previous grant receipt, demographics, and institutional affiliations.

2) Table S5 Column 2 tests whether the results reported in Table 1 are sensitive to including a

control for the total dollars awarded to each grant. Since peer reviewers are instructed not to consider

the funding amounts requested in the grant proposal, we do not expect funding levels to confound

our regression findings. NIH funding allocations are made by funding the lowest-scored project

and proceeding to higher-scored projects until the budget for that research subject is exhausted.

However, one may be concerned that the applications with the best peer review scores also receive

the most funding, and that it is through this funding channel that these grants have more productive

research outcomes. We find that controlling for funding allocations does not substantially attenuate

our main result. For the total citation outcome, the coefficient on percentile score remains almost
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unchanged at -0.016 (P<0.001) in our preferred Model 6 specification and in the specification which

adds a control for total dollars funded.

3) We investigate the robustness of our results to the inclusion of fixed effects for PI institutional

affiliations, rather than controlling for institutional quality with tiered quality bins (as in Model

6). Results with institution fixed effects, along with all of the other Model 6 control variables, are

reported in Table S5 Column 3. Again, the results are consistent, with the coefficient on percentile

score going to -0.015 (P<0.001) after the inclusion of institution fixed effects for the total citation

outcome (from -0.016 in Model 6).

4) We reports results from regressions where we include very detailed controls for past publi-

cations and relax the functional form assumptions about the relationship between an investigator’s

publication history and his future research outcomes. In particular, we consider the following co-

variates: number of publications in each decile of the citation distribution; the number of highly

successful publications in the top 5%, 1%, and 0.1% of the citation distribution; total number of

past publications; and the total number of past citations. For each of these variables, we include

a 5-year and 10-year publication history, and separate measures for whether it was a first or last

authored publication, or any other authorship position. Further, we cut these variables into 25 sep-

arate quantile bins and include create indicators for each bin. All of these indicators are included

in the final regression results, greatly relaxing the log-linear functional form assumption for the re-

lationship between, for example, number of past publications, and future research outcomes. These

regressions continue to include controls for the investigator’s degree type, institutional affiliation

tier, career age, past grant recipiency, grant renewal status, NIH funding institution, and study

section by year fixed effects.

Our findings are robust to the inclusion of these very rich controls for the investigator’s pub-

lication history as reported in Table S5 Column 4; a 1 point improvement in peer review percentile

score is associated with a 1.3 percent increase in citations (P<0.001) in the new specification with

rich publication controls, compared to 1.6 percent increase in our Model 6 specification. Similarly,

a 1 point improvement in score is associated with a 0.7% increase in the number of publications

(P<0.001) in the new specification, compared to a 0.8% increase in our Model 4 specification. Mov-

ing from the 25th to the 75th percentile of the score distribution (i.e. from a score of 21 to a score

6), is associated with a 20% increase in citations, and 10% fewer publications.

5) Table S5 Column 5 excludes all variables related to a PI’s publication history, but continues

to include controls for study section by year, institute, degrees, experience, quality of institutional
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affiliation, gender, ethnicity, and previous grant receipt. We run this model to test our hypothesis

that the explanatory variables driving most of the omitted variables bias in the bivariate Model 1

specification are those related to the PI’s publication history. Indeed, including our full vector of

other controls (excluding publication history) leads to a very similar estimated relationship between

scores and outcomes of -0.0196 in Table S5 Column 5 compared to -0.0203 in the bivariate model

reported in Table 1 Column 1. The models show remarkable coefficient stability after including

publication variables as we add other indicators for applicant background, suggesting that omitted

variables bias due to unobserved heterogeneity in applicant prestige is unlikely to play a strong role

in explaining our regression results.

6) Table S5 Column 6 restricts the sample to only include PIs with rare names, defined as

investigators with a first initial, middle initial, and last name combination that is unique among

authors in PubMed. One limitation of the analyses reported in this paper is that we match applicant

investigators to past publications using investigator names. Because this match may not be exact,

we tend to over-count the publication history of investigators with common names, introducing

measurement error in the independent variables. Results from the rare name sample are very

similar to the original Model 6 specification: a one point improvement in score associated with 1.4%

increase in citations (P<0.001)

7) Table S5 Column 7 presents our identification at infinity results to address concerns about

potential selection on unobservables. We restrict the sample to only include applications that

receive percentile scores of 15 or less; almost 93% of applications with scores less than 15 are

funded. Using just this subsample, we find a stronger relationship between scores and outcomes: a

one point improvement in score associated with 2.9% increase in citations (P<0.001). This stronger

relationship may be in part due to the fact that any sample selection bias is likely to have attenuated

our results; reducing the potential for selection should then increase our estimates of value added.

It is also possible, as suggested by Figures 3 and 4 in the main body, that the true relationship

between scores and outcomes is also stronger for this set of grants.

D.4 Alternative sample selection criteria

In this section, we test whether peer review committees can successfully discriminate appli-

cation quality even amongst applicants who are less likely to have a long, proven academic track

record. These specifications provide an even stronger test of peer review’s ability to draw conclu-

14



sions about the potential impact of application’s scientific proposal. In all cases, regressions match

the Model 6 specification with a full set of control variables.

1-2) Previous work has suggested that the peer review scores are more predictive of research

outcomes for renewal applications than for new grant applications due to the stronger signals of

research quality available once the research agenda is further advanced (6 ). We investigate this

hypothesis, separating our sample into new grant approvals and renewal applications, reported

in Table S6 Columns 1 and 2, respectively. Using the Model 6 regression specification, we find

that although peer review scores are somewhat stronger predictors of citations and publications for

renewal applications, there remains a strong relationship between peer review scores and citations

even for new applications. In particular, a one point improvement in percentile score is associated

with 1.3% increase in citations for new grant applications (P<0.001), compared to a 1.8% increase

in citations for renewal applications (P<0.001)

3-4) Next we investigate whether peer review committees can assess application quality amongst

applicants who have never previously been a principal investigator on a NIH grant. Table S6

Columns 3 and 4 report results on the sample with and without prior NIH funding, respectively.

The relationship between peer review scores and citation outcomes are very similar for these two

samples, with a one point improvement in score associated with 1.43% more citations for applicants

with no prior NIH grants, compared to 1.46% for applicants with prior grants.

5-6) Lastly, we split our sample according to the PI’s experience. Table S6 Column 5 reports

results for investigators who are within 10 years of completing their doctoral terminal degree, and

column 6 excludes these junior investigators. Restricting to junior investigators should also limit

the scope for omitted variables bias due to unobserved variation in applicant fame or prestige

that is not captured by the included regressors, since junior investigators have not had as much

time to develop professional reputations. We find that the relationship between peer review scores

and citations is highly similar for less experienced investigators, suggesting further support for the

hypothesis that peer review committees are successfully assessing application quality independent

of signals of applicant prestige.

D.5 Linear regression model results

1) Table S7 replicates the findings from our main results in Table 1, using linear ordinary

least squares regressions rather than poisson regressions. The included covariates in each regression

parallel those included in Models 1-6 as described above. In column 1, before the inclusion of
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any control variables, a 1 point improvement in percentile score is associated with 5.3 additional

citations (P<0.001). This effect attenuates to 4.1 additional citations per 1 point score improvement

in the Model 6 specification (P<0.001), which includes controls for publication history, institutional

affiliation, gender, ethnicity, degrees earned, career age, past grant receipt, NIH funding institute,

and study section by year fixed effects. Similarly, without control variables (Table S7 Column 1),

each improvement in percentile score is associated with 0.11 more publications (P<0.001), which

attenuates to 0.05 fewer publications in Model 6 (Table S7 Column 4, P<0.001).

2) Table S8 replicates the findings from Table 2 on the value added of peer review for identifying

hit publications and research with commercial applications, using linear ordinary least squares

regressions rather than poisson regressions. The included covariates in each regression match those

in Model 6, as described above. We find that improved peer review scores are associated with more

hit publications and follow-on patenting. In particular, a one standard deviation improvement in

percentile score is associated with 0.008 more publications in the top 0.1%, 0.038 in the top 1%, and

0.133 in the top 5% (P<.0001), holding constant the investigator’s publication history, institutional

affiliation, gender, ethnicity, degrees earned, career age, past grant receipt, NIH funding institute,

and study section by year fixed effects. Because these publication counts are overlapping and

cumulative, it is not surprising that we find a greater coefficient on the top 5% outcome compared

to the others. Turning to the patent outcomes, we find that a 1 standard deviation improvement in

percentile scores is associated with 0.015 more patents acknowledging the grant directly and 0.78

more patents acknowledging the grant indirectly.
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Figure 1: Distribution of Percentile Scores and Grant Outcomes
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Notes: The top panel is the distribution of our independent variable, the percentile score received by a funded

NIH R01 grant. A percentile score of X means that a grant received a better score than all but X% of grants

evaluated by the same study section in the same year. The bottom panels plot the distribution of future research

outcomes associated to a grant: the total number of publications as well as citations. For the purposes of these

histograms, citations have been top-coded at 800 and publications have been top-coded at 25; the rest of the analysis

does not impose any such top-coding.
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Supplementary Table 1: Summary Statistics

Mean Median Standard Deviation
Sample Coverage
# Grants 137,215
# Institutes/Centers 24
# Study Sections 617
# Years 29

Grant Characteristics
% New 56.43
Peer review percentile score 14.22 12.60 10.17
Funding Amount $1,220,731 $1,092,000 $889,956

Grant Outcome Variables
# Citations to acknowledged publications 291.12 116 573.94
# Acknowledged publications 7.36 5 8.54
# Top 0.1% acknowledged publications 0.05 0 0.30
# Top 1% acknowledged publications 0.25 0 0.85
# Top 5% acknowledged publications 1.00 0 2.14
# Directly acknowledged patents 0.10 0 0.69
# Indirectly acknowledged patents 4.75 0 19.55

PI Characteristics and Prior Performance
# Citations in past 5 years, first or last author 178 62 470
# Publications in past 5 years, first or last author 25 12 93
# Top 0.1% acknowledged publications in past 5 years, first or last 
author 1.77 0 4.57

# Top 1% acknowledged publications in past 5 years, first or last 
author 4.16 2 10.87

# Top 5% acknowledged publications in past 5 years, first or last 
author 7.46 4 20.38

# Citations in past 5 years 341 104 1260
# Publications in past 5 years 46 18 236
# Top 0.1% acknowledged publications in past 5 years 3.40 1 11.94
# Top 1% acknowledged publications in past 5 years 7.89 3 30.09
# Top 5% acknowledged publications in past 5 years 14.08 6 57.09
Years since doctorate 18.21 17 8.96
Has Ph.D 71.77
Has MD 20.30
Has MD/Ph.D. 7.16
% Received prior R01 funding 70.42
% Received prior funding, non R01 45.21
Affiliated with Top 5 Research Institution 14.75
Affiliated with Top 10 Research Institution 23.82
Affiliated with Top 20 Research Institution 37.08
Affiliated with Top 50 Research Institution 63.24

Supplementary Table 1: Summary Statistics

Notes: The sample includes all NIH-funded R01 grants from 1980-2008. We restrict to new and competing renewal applications that
received study section percentile scores. See Supporting Online Material for additional details about the definition of variables.  
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Supplementary Table 2: Do Peer Review Scores Predict Future Citations?
All Covariates

(1) (2) (3) (4) (5) (6)

-0.0203*** -0.0215*** -0.0162*** -0.0164*** -0.0162*** -0.0158***
(0.0006) (0.0008) (0.0007) (0.0007) (0.0007) (0.0007)

0.5211*** 0.4502*** 0.5152*** 0.4822*** 0.4885***
(0.0122) (0.0118) (0.0122) (0.0125) (0.0126)

-0.0002*** -0.0002** -0.0002** -0.0001**
(0.0001) (0.0001) (0.0001) (0.0001)
-0.0011 -0.0002 -0.0005 -0.0001
(0.0010) (0.0010) (0.0010) (0.0010)
0.0301*** 0.0301*** 0.0293*** 0.0271***
(0.0041) (0.0043) (0.0043) (0.0042)
0.0116** 0.0110* 0.0111* 0.0112**
(0.0057) (0.0058) (0.0058) (0.0057)
0.0076 0.0061 0.0060 0.0066

(0.0072) (0.0074) (0.0074) (0.0074)
-0.0000 -0.0000 -0.0000 -0.0000
(0.0001) (0.0001) (0.0001) (0.0001)

-0.0028*** -0.0032*** -0.0029*** -0.0031***
(0.0006) (0.0006) (0.0006) (0.0006)
0.0011 0.0019 0.0017 0.0027

(0.0030) (0.0031) (0.0031) (0.0030)
-0.0095** -0.0101** -0.0099** -0.0095**
(0.0043) (0.0044) (0.0044) (0.0043)
0.0293*** 0.0279*** 0.0277*** 0.0246***
(0.0055) (0.0056) (0.0056) (0.0055)

0.2630*** 0.2727*** 0.2227***
(0.0149) (0.0151) (0.0152)
0.2555*** 0.2520*** 0.1976***
(0.0189) (0.0189) (0.0192)
0.0598 0.0599 0.0250

(0.0942) (0.0949) (0.0910)
N 137,215 136,076 136,076 128,547 128,547 128,547
Controls:
   Subject-year X X X X X
   PI publication history X X X X
   PI career characteristics X X X
   PI grant history X X
   PI institution/demographics X
Notes: See Table 1 

# Top 5% acknowledged publications in past 5 
years

Competing Renewal

# of Citations, past 5 years, first or last author 

# of Publications, past 5 years 

Has MD

Has MD/Ph.D.

# of Publications, past 5 years, first or last author

# Top 5% acknowledged publications in past 5 
years, first or last author

# Top 1% acknowledged publications in past 5 
years, first or last author

# Top 0.1% acknowledged publications in past 5 
years, first or last author

# Top 1% acknowledged publications in past 5 
years

# Top 0.1% acknowledged publications in past 5 
years

Dependent Variable: Future Citations

Do Peer Review Scores Predict Future Citations?  Displaying Additional Covariates

Independent Variable: NIH Percentile Score

# of Citations, past 5 years 

Has other (non Ph.D) degree
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Supplementary Table 2 Continued: Do Peer Review Scores Predict Future
Citations?

All Covariates

(1) (2) (3) (4) (5) (6)
Within 5 years of highest degree -0.0144 -0.0363 -0.0376

(0.0457) (0.0457) (0.0450)
Within 10 years of highest degree -0.1598*** -0.2128*** -0.2074***

(0.0425) (0.0428) (0.0425)
Within 15 years of highest degree -0.2578*** -0.3284*** -0.3144***

(0.0429) (0.0439) (0.0435)
Within 20 years of highest degree -0.2976*** -0.3751*** -0.3590***

(0.0435) (0.0447) (0.0443)
Within 25 years of highest degree -0.3237*** -0.4023*** -0.3893***

(0.0452) (0.0465) (0.0461)
Within 30 or more years of highest degree -0.3975*** -0.4746*** -0.4630***

(0.0453) (0.0464) (0.0460)
-0.0582 -0.0213 0.0132
(0.0520) (0.0524) (0.0515)

0.0857*** 0.0771***
(0.0173) (0.0172)
0.1259*** 0.1072***
(0.0171) (0.0170)
0.0251** 0.0284**
(0.0121) (0.0121)
0.0253* 0.0277**
(0.0131) (0.0132)

0.0884***
(0.0195)
0.0043

(0.0201)
0.0569***
(0.0161)
0.0480***
(0.0136)

-0.1621***
(0.0248)

-0.1585***
(0.0119)
0.1577***
(0.0180)
0.0455*
(0.0248)
0.1126***
(0.0345)

N 137,215 136,076 136,076 128,547 128,547 128,547
Controls:
   Subject-year X X X X X
   PI publication history X X X X
   PI career characteristics X X X
   PI grant history X X
   PI institution/demographics X
Notes: See Table 1 

No ethnicity information

Top 50 Research Institution

Unknown Institution

1 previous R01

Female

Asian

Hispanic

Dependent Variable: Future Citations

No career age information

1 previous non R01

2 or more previous non R01s

2 or more previous R01s

Top 5 Research Institution

Top 10 Research Institution

Top 20 Research Institution
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Supplementary Table 3: Do Peer Review Scores Predict Future Publications?
All Covariates

(1) (2) (3) (4) (5) (6)

-0.0155*** -0.0091*** -0.0076*** -0.0077*** -0.0076*** -0.0075***
(0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003)

0.5731*** 0.5335*** 0.5560*** 0.5440*** 0.5483***
(0.0069) (0.0066) (0.0069) (0.0072) (0.0072)

0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000

0.0088*** 0.0093*** 0.0091*** 0.0087***
(0.0009) (0.0010) (0.0010) (0.0010)
0.0148*** 0.0151*** 0.0144*** 0.0136***
(0.0028) (0.0030) (0.0029) (0.0029)

-0.0102*** -0.0104*** -0.0102*** -0.0093**
(0.0039) (0.0039) (0.0038) (0.0038)
-0.0032 -0.0053 -0.0054 -0.0053
(0.0046) (0.0045) (0.0045) (0.0045)

-0.0001*** -0.0001*** -0.0001*** -0.0001***
0.0000 0.0000 0.0000 0.0000

-0.0056*** -0.0059*** -0.0058*** -0.0058***
(0.0005) (0.0005) (0.0005) (0.0006)
0.0086*** 0.0093*** 0.0092*** 0.0100***
(0.0022) (0.0023) (0.0023) (0.0023)
-0.0036 -0.0042 -0.0041 -0.0045
(0.0030) (0.0031) (0.0030) (0.0029)
0.0044 0.0048 0.0047 0.0041

(0.0032) (0.0031) (0.0031) (0.0030)
0.1017*** 0.1033*** 0.1001***
(0.0082) (0.0084) (0.0084)
0.1666*** 0.1641*** 0.1508***
(0.0110) (0.0110) (0.0113)
0.0967** 0.0947** 0.0964**
(0.0480) (0.0481) (0.0478)

N 137,215 136,171 136,171 128,638 128,638 128,638
Controls:
   Subject-year X X X X X
   PI publication history X X X X
   PI career characteristics X X X
   PI grant history X X
   PI institution/demographics X
Notes: See Table 1 

Do Peer Review Scores Predict Future Publications?  Displaying Additional Covariates

Dependent Variable: Future Publications

# of Publications, past 5 years 

Independent Variable: NIH Percentile Score

Competing Renewal

# of Citations, past 5 years, first or last author 

# of Publications, past 5 years, first or last author

# Top 5% acknowledged publications in past 5 
years, first or last author

# Top 1% acknowledged publications in past 5 
years, first or last author

# Top 0.1% acknowledged publications in past 5 
years, first or last author

# of Citations, past 5 years 

# Top 5% acknowledged publications in past 5 
years

# Top 1% acknowledged publications in past 5 
years

# Top 0.1% acknowledged publications in past 5 
years

Has MD

Has MD/Ph.D.

Has other (non Ph.D) degree
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Supplementary Table 3 Continued: Do Peer Review Scores Predict Future
Publications?

All Covariates

(1) (2) (3) (4) (5) (6)
Within 5 years of highest degree 0.0189 0.0111 0.0058

(0.0261) (0.0263) (0.0260)
Within 10 years of highest degree -0.0376 -0.0561** -0.0598**

(0.0264) (0.0266) (0.0264)
Within 15 years of highest degree -0.0674** -0.0928*** -0.0938***

(0.0266) (0.0271) (0.0267)
Within 20 years of highest degree -0.0604** -0.0892*** -0.0901***

(0.0265) (0.0271) (0.0269)
Within 25 years of highest degree -0.0645** -0.0955*** -0.0981***

(0.0278) (0.0283) (0.0279)
Within 30 or more years of highest degree -0.0682** -0.1003*** -0.1053***

(0.0274) (0.0277) (0.0274)
-0.0454* -0.0235 -0.0192
(0.0262) (0.0263) (0.0257)

0.0201** 0.0196**
(0.0092) (0.0091)
0.0442*** 0.0422***
(0.0095) (0.0095)
0.0263*** 0.0300***
(0.0064) (0.0064)
0.0423*** 0.0506***
(0.0081) (0.0081)

-0.0018
(0.0114)
-0.0234**
(0.0113)
0.0115

(0.0089)
-0.0269***
(0.0077)

-0.1076***
(0.0134)

-0.1075***
(0.0064)
0.1845***
(0.0093)
0.0862***
(0.0137)
0.1426***
(0.0213)

N 137,215 136,111 136,111 128,580 128,580 128,580
Controls:
   Subject-year X X X X X
   PI publication history X X X X
   PI career characteristics X X X
   PI grant history X X
   PI institution/demographics X
Notes: See Table 1 

1 previous non R01

2 or more previous non R01s

Top 5 Research Institution

Top 10 Research Institution

Top 20 Research Institution

Dependent Variable: Future Publications

No career age information

1 previous R01

2 or more previous R01s

No ethnicity information

Top 50 Research Institution

Unknown Institution

Female

Asian

Hispanic
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Supplementary Table 4: Do Peer Review Scores Predict Future Citations and
Publications?

Alternative Outcome Variables

Main Estimate 
(Acknowledged
within 5 years)

Acknowledged
within 10 years

Name-matched
within 5 years

Name-matched
within 10 years

(1) (2) (3) (4)

-0.0158*** -0.0153*** -0.0100*** -0.0104***
(0.0007) (0.0007) (0.0007) (0.0007)

N 128,547 128,607 129,283 129,288

-0.0075*** -0.0074*** -0.0044*** -0.0051***
(0.0003) (0.0003) (0.0012) (0.0012)

N 128,580 128,638 136,901 136,903

Notes:  Each reported figure is the coefficient on scores from a single Poisson regression of grant outcomes on NIH 
peer review scores; standard errors are reported in parentheses.  All columns include the full set of controls 
described in Column 6 of Table 1.  Column 1 defines future citations and publications based on all publications 
published within 5 years of grant award that acknowledge a grant's main project number.  Column 2 extends this 
window to 10 years.  Column 3 includes all publications by the same applicant within a 5 year window, regardless of 
grant acknowledgement.  Column 4 examines publications within 10 years by the same applicant, without need for 
an explicit acknowledgement.  See notes to Table 1 and Supporting Online Material for more details.  

Do Peer Review Scores Predict Future Citations and Publications? 
Alternative Outcome Measures

Independent Variable: 
NIH Percentile Score

Dependent Variable: Future Publications

Independent Variable: 
NIH Percentile Score

Dependent Variable: Future Citations
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Supplementary Table 5: Do Peer Review Scores Predict Future Citations and
Publications?

Robustness to Alternative Specifications

Main Estimate Funding Amount Institution
Fixed Effects

Additional Past 
Publication 

Details

No Past 
Publication 

Details
Rare Names Only SCORE < 15

(1) (2) (3) (4) (5) (6) (7)

-0.0158*** -0.0158*** -0.0152*** -0.0131*** -0.0196*** -0.0144*** -0.0290***
(0.0007) (0.0007) (0.0007) (0.0007) (0.0008) (0.0008) (0.0019)

N 128,547 128,547 128,547 128,547 128,547 109,592 76,056

-0.0074*** -0.0075*** -0.0076*** -0.0068*** -0.0085*** -0.0061*** -0.0118***
(0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0004) (0.0009)

N 128,638 128,580 128,580 128,580 128,580 109,619 76,097

Do Peer Review Scores Predict Citations and Publications?  Robustness to alternative specifications

Notes:  Each reported figure is the coefficient on scores from a single Poisson regression of grant outcomes on NIH peer review scores; standard errors are in 
parentheses. Unless otherwise stated, all columns include the full set of controls described in Column 6 of Table 1. Column 1 reproduces our main estimate 
from Table 1.  Column 2 includes controls for the amount of funding a grant receives. Column 3 includes fixed effects for an individual's insitutional affiliation 
at the time of grant review. Column 4 includes more detailed controls for an applicant's publication history as described in SOM D.3. Column 5 estimates our 
main specification but without an information about an applicant's past publications. Column 6 restrict the sample to authors whose first initial, middle initial, 
and last name appear only once in PubMed. Column 7 restricts the sample to applications that were scored 15 or lower. See the Supporting Online Material 
and notes to Table 1 for more details.  

Independent Variable: 
NIH Percentile Score

Independent Variable: 
NIH Percentile Score

Dependent Variable: Future Citations

Dependent Variable: Future Publications
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Supplementary Table 6: Do Peer Review Scores Predict Future Citations and
Publications? Alternative Samples

Type 1 
(New Grants)

Type 2 
(Renewal 
Grants)

No prior NIH 
funding

Prior NIH 
funding

Experience 
<10 Years

Experience 
>10 Years

(1) (2) (3) (4) (5) (6)

-0.0129*** -0.0179*** -0.0143*** -0.0146*** -0.0155*** -0.0141***
(0.0010) (0.0009) (0.0018) (0.0008) (0.0016) (0.0008)

N 71,185 56,365 19,639 107,525 24,519 97,740

-0.0055*** -0.0090*** -0.0048*** -0.0066*** -0.0048*** -0.0066***
(0.0005) (0.0004) (0.0009) (0.0004) (0.0007) (0.0004)

N 71,236 56,367 19,710 107,544 24,525 97,756

Do Peer Review Scores Predict Citations and Publications?  alternative samples

Notes:  Each reported figure is the coefficient on scores from a single Poisson regression of grant outcomes on NIH peer 
review scores; standard errors are reported in parentheses. All columns include the full set of controls described in 
Column 6 of Table 1. Column 1 restricts to new R01 grants. Column 2 restricts to renewed R01s.  Column 3 restricts to 
PIs who have not been the primary recipient of any prior NIH-funding (can be non R01); Column 4 focuses on PIs who 
have received prior NIH-funding.  Columns 5 and 6 split the sample based on whether a PI is within 10 years of her 
highest degree. See notes to Table 1 and the Supporting Online Material for more details.  

Independent Variable: 
NIH Percentile Score

Independent Variable: 
NIH Percentile Score

Dependent Variable: Future Citations

Dependent Variable: Future Publications
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Supplementary Table 7: Do Peer Review Scores Predict Future Citations and
Publications? Linear Regression

(1) (2) (3) (4) (5) (6)

-5.3365*** -5.6592*** -4.1540*** -4.2745*** -4.2413*** -4.1420***
(0.1608) (0.2329) (0.1976) (0.2074) (0.2086) (0.2066)

N 137,215 137,215 137,215 129,615 129,615 129,615

-0.1056*** -0.0590*** -0.0475*** -0.0480*** -0.0476*** -0.0475***
(0.0021) (0.0024) (0.0022) (0.0023) (0.0023) (0.0023)

N 137,215 137,215 137,215 129,615 129,615 129,615

Controls:
   Subject-year X X X X X
   PI publication history X X X X
   PI career characteristics X X X
   PI grant history X X
   PI institution/demographics X
Notes:  Each reported figure is the coefficient on scores from a single OLS regression of grant outcomes on NIH peer review 
scores; standard errors clustered at the study section year are reported in parentheses. See notes to Table 1 and 
Supporting Online Materials for more details.

Do Peer Review Scores Predict Future Citations and Publications?  Linear Regression

Dependent Variable: Future Citations

Independent Variable: 
NIH Percentile Score

Dependent Variable: Future Publications

Independent Variable: 
NIH Percentile Score
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Supplementary Table 8: Do Peer Review Scores Predict Hit Publications and
Follow-on Patents? Linear Regression

Top 0.1% Top 1% Top 5% Direct Indirect

(1) (2) (3) (4) (5)

-0.0008*** -0.0038*** -0.0133*** -0.0765*** -0.0015***
(0.0001) (0.0003) (0.0007) (0.0081) (0.0002)

N 129,615 129,615 129,615 129,615 129,615

Do Peer Review Scores Predict Future High Impact Research? Linear Regression

Dependent Variable: High Impact Publications Dependent Variable: Patents

Independent Variable: 
NIH Percentile Score

Notes: Each reported figure is the coefficient on scores from a single OLS regression of grant outcomes on NIH 
peer review scores.   All columns include the full set of controls described in Column 6 of Table 1.  
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